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Abstract— Cancer remains one of the leading causes of death worldwide, with the global cancer mortality rate continuing to 

rise. Projections estimate approximately 12 million deaths by 2030. Prostate cancer, in particular, stands out as a major 

contributor to cancer-related mortality, with its incidence steadily increasing over the past decade. This study aims to construct a 

quantitative structure- activity relationship (QSAR) model for the development of a highly effective and robust anti-prostate 

cancer agent targeting the LNCaP cell line. Model One was found to be predictive, powerful, and reliable, based on the 

following statistical parameters: coefficient of determination (R²) = 0.9916, adjusted R² = 0.9878, standard error of estimation 

(SEE) = 0.346, mean absolute error (MAE) = 0.035, and concordance correlation coefficient (CCC) = 0.9238. Additionally, the 

model demonstrated anticancer activity of tanshinone derivatives based on the THSA, MLFER_E, ASP-3, AVP-7, and TDB1v 

descriptors. Molecular docking results revealed that the docking scores of the three most promising compounds ranged from (-

10.4 to -10.6) kcal/mol. These findings suggest that the selected compounds hold significant potential for predicting the anti-

proliferative effects of other tanshinone derivatives against the LNCaP prostate cancer cell line. 
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1. Introduction 

Cancer continues to be a 

leading cause of mortality 

worldwide. The global 

cancer mortality rate is 

steadily rising, with 

projections estimating 

approximately 12 million 

deaths by 2030 [1]. Cancer 

cells differ significantly 

from their normal 

counterparts in various biochemical processes, particularly in 

cell division and growth regulation. A key characteristic of 

most cancer cells is their high rate of proliferation. Therefore, 

targeting pathways involved in uncontrolled cell division 

which ultimately trigger apoptosis has emerged as a 

promising avenue in cancer therapy [2]. The ideal anti-cancer 

drugs should selectively destroy cancer cells without causing 

significant harm to healthy tissues [3].  

 

However, these treatments can also damage certain normal, 

proliferating cell, which has motivated the global search for 

safer and more effective therapeutic options for cancer 

prevention and treatment. Prostate cancer ranks among the 

most common malignancies in men globally and is a 

significant contributor to cancer-related deaths. Its incidence 

has steadily increased over the past decade [4]. This form of 

cancer originates in the prostate gland and predominantly 

affects older males. According to GLOBOCAN (2018), 

prostate cancer is the second most diagnosed cancer in men, 

with 1,276,106 new cases and 358,989 deaths reported 

worldwide, with higher rates observed in developed nations. 

By 2030, due to global population growth, the number of new 

cases is expected to rise to 1.7 million, with deaths projected 

to reach 499,000 [5], [6], [7].  

 

Despite the use of various anti-cancer drugs either alone or in 

combination with radiotherapy no conventional treatment has 

proven highly effective against advanced prostate cancer [8]. 

Studying the progression of prostate cancer from its early to 

advanced stages remains a significant challenge in vitro. A 

seminal study by Horoszewicz and colleagues introduced the 
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LNCaP prostate cancer cell line, which continues to be one of 

the few, if not the only, human cell lines capable of 

simulating a broad spectrum of prostate cancer stages. This 

includes the transition from androgen sensitivity to castration-

resistant states, metastasis to bone, and varying responses to 

drug treatments [9]. The most widely used human prostate 

cancer cell lines are PC3, DU145, and LNCaP [10]. Among 

these, only LNCaP cells express the androgen receptor and 

respond to androgens. This androgen responsiveness is a key 

reason why LNCaP cells are uniquely suited for modeling the 

progression of prostate cancer. 

 

Over the years, many drugs have been discovered through 

random screening and the serendipitous identification of 

natural compounds effects on various diseases. Although this 

traditional approach has limitations, it has significantly 

contributed to the development of many essential drugs. 

However, the drug discovery process is typically lengthy, 

resource-intensive, and costly, involving several stages from 

target identification to final drug approval [11]. To improve 

the efficiency of drug development, researchers are 

increasingly relying on modern technologies and innovative 

methodologies [12]. The development of new anti-prostate 

cancer agents has become particularly critical given the 

diseases rising prevalence [13], [14] and the rapid emergence 

of multidrug resistance, which significantly hampers the 

effectiveness of current chemotherapies [15], [16]. 

Tanshinones, specifically Tanshinone I (Tan I) and 

Tanshinone IIA (Tan IIA), have shown potent anti-cancer 

activity against various malignancies, including cancers of the 

bladder [17], cervix [18], liver [19], [20] pancreas, and 

prostate [21], [22], [23], [24], [25]. Additionally, derivatives 

of these compounds have demonstrated effectiveness in 

limiting the invasiveness and metastatic potential of prostate 

cancer cells [26]. 

 

In silico approaches have proven useful in elucidating the 

molecular mechanisms of interactions between small 

molecules and target proteins. Accordingly, molecular 

docking and pharmacokinetic analyses including assessments 

of drug-likeness based on Lipinski’s Rule of Five and 

ADMET profiling were performed on selected Tanshinone 

derivatives. These studies aimed to evaluate their potential 

against castration-resistant prostate cancer using the LNCaP 

cell line and targeting the 5T8E protein receptor, with the 

goal of describing their binding affinities and interaction 

profiles. 
 

2. Method 

2.1. Data collection 

The 23 tanshinone derivatives synthesized by Xu et al. [27] 

were assessed for their anticancer potential against the 

LNCaP prostate cancer cell line, and their inhibitory 

concentrations (IC₅₀) were transformed into logarithmic scale 

values (pIC₅₀) using Equation 1. These transformed inhibitory 

values were used in a comprehensive Quantitative Structure- 

Activity Relationship (QSAR) analysis to identify the most 

promising compounds with potent anti-prostate cancer 

activity. 

pIC50 = −log10 (IC50 × 10⁻⁶)   (1) 

 

2.2. 2D Structure and geometry optimization 

The molecular structures of the compounds were initially 

sketched using ChemDraw v12.0 and subsequently imported 

for Density Functional Theory (DFT) calculations [28]. 

Geometry optimization was carried out using the B3LYP 

functional in combination with the 6-31G basis set in Spartan 

V14.1 [29]. 

 

2.3. Model generation 

To construct the predictive models, Multiple Linear 

Regression (MLR) was applied to the training dataset in 

conjunction with the Genetic Function Approximation (GFA) 

technique. In this modelling approach, the biological activity 

values (pIC₅₀) served as dependent variables, while various 

calculated molecular descriptors were used as independent 

variables. 

 

2.4. Model validation 

In QSAR modeling, the most commonly used evaluation 

metrics include R² and R²adj. Although high values of these 

metrics are important, they alone are not sufficient to confirm 

model reliability [30]. To assess potential multicollinearity 

among the descriptors, the Variance Inflation Factor (VIF) 

was employed. A VIF value close to 1 indicates no 

correlation, values between 1 and 5 suggest an acceptable 

level of correlation, while values exceeding 10 indicate strong 

multicollinearity, rendering the model unacceptable. The VIF 

is defined as: 

𝑉𝐼𝐹 =  
1

(1−𝑅2)
     (2) 

 

R² is the correlation coefficient of the selected descriptor [31]. 

All descriptors and their contributions to the model can be 

evaluated using their mean effect, which reflects the influence 

of individual descriptors in the developed equation. The signs 

of the model parameters indicate whether each descriptor 

contributes positively or negatively to the overall model 

outcome [32]. 

𝑀𝑒𝑎𝑛 𝐸𝑓𝑓𝑒𝑐𝑡 =  
𝛽𝑗Ʃ𝑖

𝑛𝐷𝑗

Ʃ𝑚(𝛽𝑗Ʃ𝑖
𝑛𝐷𝑗)

        (3) 

 

To assess the external validity of the developed model, a test 

set was used, and the Concordance Correlation Coefficient 

(CCC) was calculated, a CCC value greater than 0.8 is 

generally considered indicative of a reliable and predictive 

model. The CCC is defined as: 

 

𝐶𝐶𝐶 =  
2 ∑ (𝑌í −  Ȳ) (𝑌í −  Ȳí)𝑛𝐸𝑋𝑇

𝑖=1

Ʃ𝑖=1 
𝑛𝐸𝑋𝑇(𝑌í −  Ȳ)2 + Ʃ𝑖=1

𝑛𝐸𝑋𝑇(𝑌í − Ȳí)2 +  𝑛𝐸𝑋𝑇 (𝑌í −  Ȳí)2
 

 

𝐶𝐶𝐶 =  
2 ∑ (𝑌í −  Ȳ) (𝑌í −  Ȳí)𝑛𝐸𝑋𝑇

𝑖=1

Ʃ𝑖=1 
𝑛𝐸𝑋𝑇(𝑌í −  Ȳ)2 + Ʃ𝑖=1

𝑛𝐸𝑋𝑇(𝑌í − Ȳí)2 +  𝑛𝐸𝑋𝑇 (𝑌í −  Ȳí)2
 

      (4) 

 

Where Yᵢ represents the experimental activity value, Ȳ 

denotes the mean of the experimental values, Ŷᵢ is the 

predicted activity value, and Ŷ̄ is the mean of the predicted 
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values. EXT refers to the external (test) set used for 

validation [33]. 

 

2.5. Y- randomization 

Another key validation technique used to assess model 

robustness is the Y-randomization test. In this method, the 

dependent variables are randomly shuffled while the 

independent variables remain unchanged. The test is applied 

to the training set, and a valid model should yield 

significantly lower R² and Q² values compared to the original 

model. Such results confirm that the model is robust, reliable, 

and not the result of chance correlations. 

 

2.6. Docking study 

Molecular docking studies provided valuable insights into the 

interactions between ligands and the receptor, enabling the 

identification of the best-binding compounds based on their 

binding affinities. This approach was used to screen for the 

most promising candidates that demonstrated strong binding 

potential with the androgen receptor. 

 

2.7. SwissADME (ADMET/Drug- likeness) 

The top three compounds identified as the most active against 

the LNCaP cell line were further evaluated for their drug-

likeness and ADMET properties using SwissADME and 

ADMET lab 2.0. Conducting such profiling in the early 

stages of drug discovery is essential for evaluating the 

therapeutic viability and development potential of candidate 

molecules. 

 

3. Results and Discussion 

This study analyzed a dataset comprising 23 tanshinone 

derivatives along with their biological activities to evaluate 

their potential as anti-prostate cancer agents. The dataset was 

divided using the Kennard-Stone algorithm, allocating 17 

compounds to the training set and the remaining 6 

compounds to the test set to evaluate the predictive 

performance of the developed models. A total of five QSAR 

models were generated through the integration of the Genetic 

Function Approximation (GFA) with Multiple Linear 

Regression (MLR). Among these, Model 1 demonstrated the 

highest statistical robustness and was identified as the most 

reliable. To select the best QSAR equation, outputs from both 

the GFA and MLR methods were compared, with Model 1 

providing the best overall results. 

 

Model 1 

pIC50 = 26.6675 (*THSA) + 0.0012 (*MLFER_E) - 2.4866 

(*ASP-3) - 131.6947 (*AVP-7) - 1200.1564 (*TDB1v) + 

0.0372. 

 

(R
2
) = 0.9916, (R

2
adj) = 0.9878, (SEE) = 0.346, (MEA) = 

0.035, (Q
2
-LOO) = 0.9824 and (CCC) test = 0.9238 

 

Model 1 was selected from the five developed models due to 

its superior statistical performance. It was employed to 

predict the anti-proliferative activities of the test set 

compounds, with the results detailed in Table 1. This model 

demonstrated excellent internal validation metrics based on 

the training set, including a high coefficient of determination 

(R²) of 0.9916, adjusted R² of 0.9878, standard error of 

estimation (SEE) of 0.346, mean absolute error (MAE) of 
0.0351, and a leave-one-out cross-validation coefficient 

(Q²_LOO) of 0.9824. For external validation using the test 

set, the concordance correlation coefficient (CCC) was 

0.9238, further supporting the model’s robustness. Table 1 

presents the binding energies, residuals, experimental pIC₅₀ 

values, and predicted pIC₅₀ values for all 23 tanshinone 

derivatives, calculated using Equation 1. 

 

Table 2 displays the definitions of the descriptors included in 

the final QSAR model. The model contains 2D topological 

descriptors MLFER_E, ASP-3, and AVP-7 which are defined 

as excessive molar refraction, average simple path order 3, 

and average valence path order 7, respectively, and describe 

the molecular structure based on atomic connectivity. The 

model also includes 3D geometrical descriptors: THSA, 

defined as the sum of the solvent-accessible surface area of 

atoms with absolute partial charges less than 0.2. It 

characterizes a molecule in terms of the atom types present 

and the spatial coordinates of each atom. TDB1v, defined as 

the 3D topological distance-based autocorrelation lag 1 

weighted by Van der Waals volume, reflects hydrogen 

bonding potential and its importance in relation to atom pairs 

separated by one bond (lag 1), which influences tanshinone 

activity against the LNCaP prostate cancer cell line. 

 

The mean effect (ME) obtained from the model parameters 

indicates that THSA and TDB1v have positive coefficients, 

suggesting that increasing these descriptors enhances the 

biological activity of the compounds. In contrast, MLFER_E, 

ASP-3, and AVP-7 have negative coefficients, implying that 

reducing these values would similarly enhance the activity of 

the tanshinone derivatives against the LNCaP cell line. Table 

3 presents the results of the Y-randomization test, which 

shows low values of R² and Q², confirming that the model’s 

robustness is not due to random chance. Table 4 provides 

statistical analyses, highlighting the correlation between 

individual descriptors and their contributions to the model. 

The scatter plot of standardized residuals versus experimental 

activity, presented in Figure 2, shows a symmetrical 

distribution of data points on both sides of zero. This 

indicates a lack of systematic bias and confirms the model’s 

reliability. Additionally, the scatter plot comparing observed 

and predicted biological activities, shown in Figure 3, 

demonstrates that the data points closely follow the trend line, 

indicating strong predictive accuracy. 

 

3.1 Docking results  

Docking simulations were performed between 23 tanshinone 

compounds and the active binding site of the androgen 

receptor (PDB ID: 5T8E). AutoDock via PyRx software was 

used to predict interactions between target macromolecules 

and candidate ligands, facilitating the identification of 

potential ligand–receptor combinations. The tanshinone 

derivatives underwent docking studies to assess their binding 

affinities with the androgen receptor (5T8E). As a result, 

three lead compounds with the most favorable binding scores 
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were identified. These compounds exhibiting docking scores 

ranging from (-10.4 to -10.6 kcal/mol) are displayed in Table 

5, which also presents their binding affinities, bond distances, 

and the specific amino acid residues involved in the 

interactions. These values indicate strong interactions 

between the top inhibitors and the androgen receptor, 

primarily involving hydrogen bonding, hydrophobic 

interactions, and electrostatic interactions. The 2D and 3D 

visual representations and spatial analyses of these ligand–

receptor interactions within the androgen receptor binding 

site were generated using Discovery Studio software. These 

top three active compounds were selected for further analysis. 

 

Compound 19 exhibited the most favorable binding energy of 

(-10.6 kcal/mol). It formed one conventional hydrogen bond 

with GLU683 (4.72 Å), a Pi-donor electrostatic interaction 

with ASN756 (6.48 Å), and a Pi-cation interaction with 

ARG752 (4.72 Å). Additional hydrophobic interactions 

included a Pi- Pi T-shaped interaction with TRP751 (6.70 Å) 

and several Pi- alkyl interactions with TRP751 (6.03 Å), 

VAL684 (6.43 Å), ARG752 (4.85, 5.42, and 6.03 Å), 

ALA748 (4.24 Å), and PRO628 (4.45 Å). The 2D and 3D 

representations of Compound 19 bound to the 5T8E receptor, 

shown in Figure 4, illustrate these interactions and highlight 

the compound's strong binding affinity. 

 

Compound 5, with the second-best docking score of (-10.5 

kcal/mol), also demonstrated a robust interaction profile. It 

formed a conventional hydrogen bond with GLU681 (4.61 Å) 

and a Pi-cation electrostatic interaction with ARG752 (5.34 

Å). Hydrophobic interactions included alkyl contacts with 

LEU815 (6.38 Å), VAL715 (4.55 Å), TRP751 (5.95 Å), and 

ALA748 (5.23 Å), as well as Pi-alkyl interactions with 

PRO682 (4.41 Å) and ARG752 (6.05, 5.51, and 4.93 Å). 

These docking conformations and interactions are depicted in 

Figure 5. 

 

Compound 8, with a docking score of (-10.4 kcal/mol), also 

exhibited strong binding characteristics with the androgen 

receptor. It formed a hydrogen bond with GLU681 (4.64 Å), 

a Pi-cation interaction with ARG752 (5.30 Å), and a Pi-donor 

interaction with ASN756 (6.40 Å). Hydrophobic contacts 

included a Pi- Pi T-shaped interaction with TRP751 (6.49 Å) 

and alkyl interactions with VAL715 (5.08 Å), ALA748 (5.27 

Å), LEU805 (6.42 Å), and TRP751 (6.03 Å). Additionally, 

Pi-alkyl interactions were observed with PRO682 (4.45 and 

4.51 Å) and ARG752 (4.93, 5.50, and 5.97 Å). The 

corresponding 2D and 3D docking visuals are presented in 

Figure 6. 

 

Interestingly, a closer examination of the 2D interaction 

diagrams (Figures 4- 6) reveals that several amino acid 

residues which do not directly bind to the ligands may still 

influence ligand-receptor interactions indirectly. These 

residues may interact with amino acids that are directly 

involved in binding, thereby contributing to the overall 

stabilization and binding affinity of the ligand- receptor 

complex. 

 

3.2 SwissADME/ ADMET Results 

A summary of the calculated ADME-related molecular 

descriptors for the top compounds, focusing on drug-likeness 

and ADMET behavior, is presented in Tables 6 and 7. All 

three compounds particularly compounds 5 and 8 exhibited a 

low number of hydrogen bond donors and acceptors. These 

favorable values support the overall pharmacokinetic profiles 

of the molecules, aligning well with desirable drug-likeness 

characteristics. A high number of hydrogen bond donors and 
acceptors generally reduce membrane permeability, as greater 

desolvation energy is required for the molecules to transition 

from aqueous environments into lipid membranes [34]. 

The blood- brain barrier (BBB) serves as a crucial defense 

mechanism for the central nervous system (CNS), 

maintaining homeostasis by controlling the exchange between 

systemic blood and the brain. For drugs that are not intended 

to target the CNS, such as those studied here, a low BBB 

penetration value is preferred, as it reduces the likelihood of 

CNS-related side effects [35], [36]. As shown in Table 7, 

compounds 19, 5, and 8 all demonstrated low BBB 

penetration values. According to the literature [37], a BBB 

value below 1 (brain/blood < 1) indicates poor CNS 

penetration, classifying the compound as CNS-inactive an 

appropriate property for drugs not targeting the brain. 

Additionally, the Caco-2 cell model was employed to 

estimate the oral absorption potential of the compounds in 

humans. This model mimics passive drug diffusion across 

intestinal epithelial cells and is widely adopted for assessing 

drug permeability and absorption [38], [39]. 
 

Table 1: Binding energy, experimental pIC50, predicted pIC50 data for 23 

Tashinone derivatives 

S/No 
Experimental 

pIC50 

Predicted 

pIC50 
Residues 

Binding 

energy 

(kcal/mol) 

*1 5.1487 6 0.8513 -10.2 

2 5.0861 5.6989 0.6128 -10.2 

3 5.2006 5.5228 0.3222 -10.2 

4 5.0409 5.3979 0.357 -10.2 

5 5.0969 5.3012 0.2043 -10.5 

6 5.1426 5.2218 0.0792 -10.2 

7 5.0915 5.1549 0.0634 -10.2 

*8 5.0222 5.0969 0.0749 -10.4 

9 5.2291 5.0457 -0.1834 -10.1 

10 5.1249 5 -0.1249 -9.9 

11 5.0757 4.9586 -0.1171 -9.8 

12 5.2365 4.9208 -0.3157 -9.4 

13 5.1938 4.8860 -0.3078 -7.6 

*14 5.6575 4.8538 -0.8037 -9.9 

15 5.7447 4.8239 -0.9208 -10.2 

16 5.8239 4.7958 -1.0281 -10.1 

*17 5.4685 4.7695 -0.699 -10.2 

18 5.2757 4.7447 -0.531 -9.8 

*19 5.3767 4.7212 -0.6555 -10.6 

20 5.8538 4.6989 -1.1549 -8.1 

*21 5.7958 4.6777 -1.1181 -10.1 

22 6.3872 4.6575 -1.7297 -7.3 

23 6.1674 4.6382 -1.4842 -10.2 

*Denote test set 

 
Table 2: Descriptors, definition and class for the build model 1 

Descriptors Definition Class 

THSA Sum of solvent accessible surface area 3D 
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of atoms with absolute value of partial 

charges less than 0.2 

MLFER_E Excessive molar refraction 2D 

ASP-3 Average simple path, order 3 2D 

AVP-7 Average valence path, order 7 2D 

TDB1v 3D topological distance based 

autocorrelation- lag 1/ weight by van 

der waals volume 

3D 

 

 

 

Table 3: Y- randomization 

Model type R2 Q2-LOO 

Original 0.991631 0.98236 

Random 1 0.116903 -1.45933 

Random 2 0.405836 -0.26787 

Random 3 0.325475 -0.51945 

Random 4 0.377133 -0.87319 

Random 5 0.342468 -0.8214 

Random 6 0.322453 -0.70271 

Random 7 0.241257 -1.05561 

Random 8 0.348599 -0.57256 

Random 9 0.3774 -0.5928 

Random 10 0.305077 -0.69085 

 
 

 Summary:   

R2 Original Model 0.991631 

Q2-LOO Original Model 0.98236 

Average R2 10 Random Models 0.31626 

Average Q2-LOO 10 Random Models -0.75558 

 

Table 4: Statistical analysis of model 1 parameters 
 THSA MLFER_E ASP-3 AVP-7 TDB1v VIF M/E 

THSA 1 0.006 0.075 -0.130 -0.348 1.354 -0.054 

MLFER_E 0.006 1 -0.244 0.472 0.575 1.626 -9.207 

ASP-3 0.075 -0.244 1 -0.291 -0.356 1.150 0.001 

AVP-7 -0.130 0.472 -0.291 1 0.822 3.405 0.103 

TDB1v -0.348 0.575 -0.356 0.822 1 4.899 0.949 

 
Table 5: Various interaction between the top ranking compoundsand the 

active site of  5T8E androgen receptor 

S/No. Binding 

affinities 

H- Bond  

Interactions 

Hydrophobic and  

Electrostatic 

interactions 

19 -10.6 GLU683 

Conventional 

H- Bond 

ARG752  

ASN756 

TRP751  

TRP751  

VAL684  

ARG752  

ALA748   

PRO628 

5 -10.5 GLU681 

Conventional 

H- Bond 

ARG752  

TRP751  

LEU805  

TRP751 

VAL715  

ALA748  

PRO682  

ARG752 

8 -10.4 GLU681 

Conventional 

H- Bond 

ARG752  

ASN756  

TRP751  

VAL715 

ALA748  

LEU805  

TRP751  

PRO682 

 ARG752 

Table 6: Drug- likeness properties of the top ranking compounds 

S/N MW HBA HBD 
Synthetic 

accessibility 

Bio 

availability 

 score 

Drug- 

likeness 

19 425.48 4 1 3.71 0.55 YES 

5 414.93 2 1 3.45 0.55 YES 

8 394.51 2 1 3.60 0.55 YES 

 

Table 7: ADMET properties prediction of the top ranking compounds 

Properties Compound 

19 

Compound 5 Compound 8 

Absorption    

Caco- 2 

permeability 

-5.13 -5.18 -5.18 

Pgp- inhibitor High 

probability 

High 

probability 

High 

probability 

Pgp- substrate Low 

probability 

Low probability Low probability 

Human 

intestinal 

absorption 

1.4% 2.1 % 5.6% 

Distribution    

BBB 

penetration 

Low Low Low 

Metabolism    

CYP1A2 

inhibitor 

High High High 

CYP1A2 

substrate 

Moderate Moderate Moderate 

CYP2C19 

inhibitor 

High Moderate Moderate 

CYP2C19 

substrate 

Low Low Low 

CYP2C9 

inhibitor 

Moderate Moderate Moderate 

CYP2C9 

substrate 

High High High 

CYP2D6 

inhibitor 

Low Low Low 

CYP2D6 

substrate 

High High High 

CYP3A4 

inhibitor 

Low Low Low 

CYP3A4 

inhibitor 

Low Low Low 

Excretion    

Clearance 

(mL/min/Kg) 

5.389 4.886 5.839 

T1/2 Short Short Short 

Toxicity    

AMES 

Toxicity 

Low 

probability 

Low probability Low probability 

Skin 

Sensitization 

Low 

probability 

Low probability Low probability 
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Carcinogenicity Low 

probability 

Low probability Low probability 

Eye Corrosion Low 

probability 

Low probability Low probability 

Eye Irritation High 

probability 

Low probability Low probability 

Respiratory 

Toxicity 

High 

probability 

High 

probability 

High 

probability 

 

 

 
 Figure 2: Scatter plot of standardized residual versus the 

Investigational activities 

 
 

Figure 3: Scatter plot of biological activities against calculated 

 activities 

 

 

 
Figure 4: 2Dand 3D pictorial of compound 19 with 5T8E androgen 

receptor 
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Figure 5: 2Dand 3D pictorial of compound 5 with 5T8E androgen receptor 

 
 

 
 Figure 6: 2Dand 3D pictorial of compound 8 with 5T8E androgen receptor 

 

4. Conclusion and Future Scope  

In conclusion, model one was found to be predictive, 

powerful, and reliable, based on the following statistical 

parameters: coefficient of determination (R²) = 0.9916, 

adjusted R² = 0.9878, standard error of estimation (SEE) = 

0.346, mean absolute error (MAE) = 0.035, and concordance 

correlation coefficient (CCC) = 0.9238. Also, the model 

shows anticancer activity of tanshinone derivatives on the 

THSA, MLFER_E, ASP-3, AVP-7, and TDB1v descriptors. 

Based on the molecular docking results, the docking scores of 

the three most promising compounds were found to be 

between (-10.4 to -10.6 kcal/mol) respectively. Drug- likeness 

and ADMET predictions revealed favorable characteristics 

for the test compounds. These results indicate that the 

compounds have promising anticancer potential, warranting 

further exploration. Modifying these molecules by 

introducing appropriate functional groups to enhance their 

binding affinity with the target receptor could lead to 
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improved efficacy and therapeutic performance. Therefore, 

this study demonstrates that computational approaches can 

effectively complement experimental research, providing 

valuable insights and stronger justification in the ongoing 

search for treatments against various diseases 
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